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ABSTRACT OF OBJECTIVES AND ACCOMPLISHMENTS:

It has been our objective and that of several other groups to use Slater-type
orbitals, STOs, characterized by exp(-R) in problems of ab initio quantum chemistry
rather than the currently used Gaussian-type orbitals, GTOs, characterized by exp(-R?).
We believe that STOs will give more accurate results because they can fulfill a cusp
condition and have correct asymptotic behavior. This was proven by us in the case of
H;. But the real test would be for molecules with two or more atoms and electrons.

The general molecular problem requires at most four-center molecular integrals.
In just the last year we have devised an accuracy and fast method for processing STO
molecular integrals: interior regions are done by Gauss-Legendre integration after a-
function expansions, and exterior regions analytically with the aid of look-up tables for

the evaluation of basic integrals. C, E, and F matrices that facilitate the calculations are




stored in memory. All our procedures have been checked by the computer algebra
program Mathematica, which can overcome all cancellation errors.

The fact that several groups have worked many years on the STO integral
problem without achieving the goal of a complete integral package, reveals the inherent
difficulty of translating analytic formulation into computer prbgrams. The most
difficult part, namely, radial integrals, has now been solved with the support of the
AFOSR. Now, it remains to use this strategy to assemble a complete STO integral

package.

INTRODUCTION

The problem of multicenter molecular integrals over Slater-type orbitals (STOs) is
a long-standing one that has been pursued in a systematic manner since the time of
Kotani, Lowdin, Colson, Bartnett, Roothaan, and Ruedenberg immediately after World
War II. Silverstone, Harris, Michels, Shavitts, and Steinborn continued work on the
problem through the sixties and seventies. Here, at Florida A&M University, we caused
renewed interest in the problem by holding an international meeting involving 35 of the
most knowledgeable scientists on Slater orbitals (exponential-type orbitals) in the
summer of 1981.

Today, several groups are making efforts to bring this problem to a close:
Steinborn (Germany), Rico (Spain), Guseinov (Russia), Bouferguene (France), Talman
(Canada), and Tai (USA). In spite of the massive effort, a general "black box" integral
subroutine has not been developed. I do believe that we at Florida A&M University
have finally penetrated the mystery of this "intractable” problem. With the help of the
computer algebra program Mathematica we can increase the precision of a number
(using up to 100 or more digits) and overcome cancellation errors. The knowledge of
the true value of an integral gives us insight to program in FORTRAN to achieve
acceptable accuracy at high speed. Our secret is that evefy orbital is associated with C,

E, and F matrices that are to be stored in computer memory. Also, speed is achieved by
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the extensive use of look-up tables. To eliminate time-consuming multiplications, a
Gauss-Legendre numerical quadrature is done for interior regions. This strategy should
be transparent after reading the attached paper, "Comprehensive Strategy for the
Calculation of Overlap Integrals with Slater-Type Orbitals." Now that all of the hard
thinking has been done, it is just a matter of time before an integral package can be
assembled.

REVIEW OF PROGRESS:

1992. Our study of STOs began in 1978 (Steinborn started in 1968). It is remarkable
that so much of our early work played a significant role in our final formulation of this
problem. In retrospect, it appears that this long gestation period was necessary.

During 1992 we wrote a paper on semianalytical methods for four-center
molecular integrals. This paper is in the spirit of our final method. The potentials were
calculated analytically and the second integral was done numerically by Simpson's rule.
Now we do the interior integration by Gauss-Legendre quadrature, and the exterior
regions is done entirely analytically. For large values of parameters, we introduced the
T and X matrices to save computer time. For small values of parameters we use
expansions in E and F matrices. In this paper only 1s orbitals were used and jmax was
set to 36. Now, we have precalculated jmax values for many different orbitals.

At the meeting, "Current Trends in Computational Chemistry," Jackson,
Mississippi, we presented an important paper, "Benchmarks for Two-Center Exchange
Integrals.” In it and in an earlier paper on "The Lowdin a-function and Overlap
Integrals" we worked with the computer algebra program Mathematica. We showed
how to easily generate exact values for the C, E, and F matrices. (This had previously
been done in FORTRAN, but with great difficulty). This permitted the exact
determination for overlap integrals for the first time. The advantage of Mathematica is
that we can work at any degree of precision and thereby always overcome cancellation

errors. As a matter of interest, it appears that for realistic problems only 100 digits are
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needed at most. But our concern is with accuracy and speed. This requires that we use
FORTRAN. However, it is always comforting and helpful in programming to work
toward the true answer. The exchange integral is given by an infinite sum of term,

I=21, . Twelve terms usually give accuracies to eight digits. Mathematica gives the
=0

exact value for each -It. It may be that at a later date we have to use convergence
accelerators as developed by Weniger or Bouferguene.

We tised a LCAO approach with only s-orbitals to find the ground state of Hj.
As expected, STOs proved to be more accurate than GTOs. Again, this was the case if a
basis of STOs with various angular momenta were used. Once more, this was

confirmed for HeH2+

1993. The one-electron three-center integral is difficult to converge if it is evaluated at
the apex of an equilateral triangle. With our new Power Macintosh we felt we had a
good chance to generate a closed formula for this integral. After a heroic effort we had
to abandon this hope. This cleared the atmosphere, and henceforth we were free to
employ numerical methods.

The invited paper, "Developments in Multicenter Molecular Integrals," was
presented in Spain. Gauss-Legendre numerical integration was selected for the interior
region and a Gauss-Laguerre quadrature for the exterior region.

1994. Once more an attempt was made to obtain closed formulas, but to no avail. The
Gauss-Laguerre integration proved to be impractical -- too many quadrature points
were needed for orbitals with high quantum numbers.

1995. All possibilities having been tried, the final formulation appeared obvious and
inevitable. Now, it was just a matter of doing it first in Mathematica and then in
FORTRAN. The spirit of the method is presented in the appended preprint,
"Comprehensive Strategy for the Calculation of Overlap Integrals with Slater-Type
Orbitals." Also included is a Mathematica version of a program for a three-center

exchange integral.




CONCLUSION:

| We claim to have solved the real difficulty of performing multicenter molecular
integrals over Slater-type orbitals by developing an accurate and fast method for the
radial integrals. The necessary angular integrals are analytic and well-known. To
complete the job of obtaining a "black box" integral package with needed extensive de-
bugging, it would be desirable to work with another group that is committed to Slater-

type orbitals. After all, many persons collaborated on Guassian-type integrals.




Comprehensive strategy for the calculation of

overlap integrals with Slater-type orbitals

Herbert W. Jones
Department of Physics
Florida A & M University
Tallahassee, Florida 32307

Abstract

A strategy is presented for the calculation of two-center overlap
integrals over Slater-type orbitals. Displaced orbitals are expanded in
spherical harmonics with Léwdin o-functions as coefficients. The
exponentials in the o-functions are expanded leading to representation in
terms of stored E and F matrices. For a given precision, the number of
terms needed for each orbital for a specified harmonic, and its displacement
multiplied by its screening constant, is pre-determined and stored. A survey
of this data is presented. The one-dimensional integration needed for the
overlap is done by Gauss-Legendre numerical integration over the interior
region, and analytically over the exterior. Complete stability is achieved and
excellent results obtained. Implications for all multicenter molecular

integrals are apparent.




I. INTRODUCTION

Slater-type orbitals (STOs), i.e., exponential type orbitals, would be
desirable for basis sets in quantum chemistry and molecular physics because
they can satisfy  the cusp condition at nuclei and represent long range
electronic behavior [1]. However, the notorious computational difficulties of
STOs have led to their virtual replacement by Gaussian-type orbitals in basis
sets. Nevertheless, significant progfess is being made in several quarters on
this long-standing problem of computing with STOs [2].

Two-center overlap integrals over STOs are needed in semiempirical
and ab initio quantum chemical calculations. There is a long history,
starting with Kotani [3], Mulliken [3], and Roothaan [3], of systematic
attempts to obtain accurate and fast evaluations of these simplest of
multicenter molecular integrals. They were not entirely successful. Even the
most recent computer codes [4, 5] must contend with restrictions on
parameter values.

Overlap integrals are also used to introduce new strategies for general
multicenter molecular integrals. Here, we consider both uses of the overlap
problem.

One might say that all mathematical methods for solving multicenter
integrals are correct; it is the finite word length of computers that is at the
root of the problem of implementation. Cancellation errors, i.e., the
subtraction of nearly equal numbers, are endemic to computations with
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.
.

STOs. These invidious cancellation or differencing errors often make results

.unusable. The problem of the speed of computation must also be confronted
if STOs are to be competitive with GTOs. This conside;'aﬁon has caused us
to recommend the use of a one-dimensional Gauss-Legendre numerical
quadrature for the interior region of space, i.e., between the origin and the
outermost orbital center.

We have had considerable success in using the Lowdin o-function
method for a limited class of STOs [6]. We must now present new details so
that this method can be efficiently used with any STO. The twin goals of
high speed and high accuracy have been achieved here with overlap integrals

with implications for all multicenter integrals.

II. THE o-FUNCTION EXPANSION
ASTO x=AR""e™Y(®, ¢) in its local coordinate system (R, ©, ¢)

has its origin displaced to (0, 0, @) in the working coordinate system (r, 6, ¢).

Its expansion in spherical harmonics is [7]:

(1)

=M

__A [(2L+1)(L+M)!}%(_1)Mi ane+ My "
Sl 'Y TG VY L+1)¢ - M)!

x oy M (Ca, Gr)v," (8, 0)

where




20 +1)0 = MR s
OLNLMCa,C_,r=( C, (i, j)x
o a ) 2(£+M)! Zo,}: . )

Hij . (Ca)i-l.—z I(Cr)J —t-1

and

et [(—l)jec’ —-e'c'], r<a @
H. = 3
ol [(—l)iec" —e™™ ] r>a

1
The normalization constant A= (2(;) [(ZN)’] 2 and istop=N+L+{-M,

and jstop=N+{. Suzuki [8] has shown that -M may be included in istop.

It is necessary when using the computer algebra program Mathematica [91.)

As pointed out by Bouferguene and Rinaldi [10], the elements of the C-
matrix C JM (i, j) grow explosively with higher harmonics ¢, which usually

necessitates using computer algebra with arbitrary accuracy to avoid
intolerable cancellation errors. Expansion of the exponentials in the o-
function leads to the E-matrix for r < a and the F-matrix for r >a [6, 11].

The elements of these matrices are small and not intimidating. Thus,

Jjmax istop

% e ey @

Jstop  imax

e'g’ >, Y EMG, ) Ca) @)™ (5)

L j=0 =0




As a general rule, computation is faster if a double sum is reduced to a
single sum. Therefore, for the sake of simplicity, too, we introduce single

dimensional matrices Y,(j) and Z,(j).

( jmax

> Y)Y, r<a 6)

o™ (Ca, Er)=1 I

istop

e"C'ZZ,(j)-(Cr)j—[—l, r>a (7)
=
with
. _Qaismp NLM 7. . i—L—£-1}
Y, ()=e 2 EMG, j)-Ca) ™, ®)
i=0
and
z,(j)= X F™ (. i)-(Ca) 9)
=0

| These definitions are slightly different from the previous ones because
we want to emphasize that ¢ and r always are associated with {. Now, the
issue is how many terms in the expansions of the exponentials are to be
taken, i.e., the values of jmax and imax. In previous work with 1s orbitals

we simply used jmax = imax = 36.




-

To cover all possible values of r in the r < a case we determine the

value of jmax to produce an error less than one part in 10'® of the exact
value when r = a. The exact value was determined b'y using Mathematica
set to 70 digit accuracy using a C-matrix closed formula, for the a-function.
Fortunately, the values of Y,(j) and also the terms that add up to Z,())
decxzea'sé“monotonically after a few terms, so there is no ambiguity in the
results. But for some STOs with \.zery large quantum numbers there is a
slight loss in accuracy to one part in 10**. This could easily be overcome by
using double precision, if need be.

In Table I we take orbitalsupto N=5, L=4, M =4, { =12, and

(Ca) = 16. We note that the first non-zero value of Y,(j) starts at j=¢

and increases in steps of two; imax is always equal to or less than jmax;

Jjmax and imax increase with ({a) and /. The different values are only

mildly different from each other. Therefore, interpolation is hardly
necessary; we may err on the side of caution without much of a change in
imax or jmax and produce only a small increase in computer time. For
simplicity, we could even just take imax = jmax. These values of jmax and
imax are to be stored as part of the data associated with an orbital as well as

its E-matrix and F-matrix.




III. OVERLAP INTEGRALS

The overlap integral between two orbitals ¥’ and y is given by

CS=[xydv (10)

The orbi£51 X’ 1is placed at the origin and % is placed along the z-axis at

(0,0, a@). Then,

x =A" rV ety M (o, ) and
x=A RV ey M (@, ).
Expanding y about the origin in o-functions and performing the

angular integration, the orthogonality of spherical harmonics dictates that

only one term with £=L" and M =M’ survives [12]. Thus

S= Kjdr rN et M (La, Er) (11)
0
with

K= (—l)M (2€,)2N'+1 (ZC)2N+1(2L+1) (L.:,.M)! (L'+M)! %
= CN—l (ZN')! (2N)‘ (2L'+1) (L—M)' (L,—M)!

(12)




The integral breaks down into two parts. The first part S1 is the
integration from 0 to a. With an eye to future developments, we decide to
use a 24-point gauss-Legendre quadrature over this inteﬁor region. We have
found that the o-functions are relatively smooth and therefore numerical
integrations over them is very successful. The o-function is accurately

evaluated using the Y, matrix with one of the jmax values. If we tried an
analytical approach using the C-matrix, we would be confronted with terms

of the form exp[—({'—{)r]. Such terms, as many investigators have

discovered, are a source of instability. When one examines exchange
integrals using expanded oc-functionsb, the product of two infinite series must
be considered. This problem can be avoided by resorting to a numerical
quadrature.

The second part of the integration S2 is from a to infinity. Here
analytic methods may safely be employed as all exponential terms are of the

form exp[—(@’+§)r]. Thus:

N+¢£ bt
S2=K Y Z,(j)f dr et Vit (13)
=0 a

J

Each integration term can readily be turned into a sum by the formula




n n—k

n! a
o (n—k)! wh*l

jdr eV rt=e™ ' (14)

The Z,(j). matrix is determined by using the Table I value for imax

corresponding to the appropriate orbital, harmonic, and ({a) value.

IV. RESULTS

The strategy described here for the evaluation of overlap integrals
proved to be very efficient and accurate. All overlaps attempted are accurate
to at least 107*? parts, as confirmed by our computer algebra program.

Table II shows our results in calculating overlap integrals done by
several authors [13]. The second line vof each calculation is the exact result
as determined by computer algebra [13b]. The various authors provide from
6 decimal digits to 16. Our results are impressive. We achieve machine

accuracy of 16 decimal digits for (744 (744) with p =2, t = 1/2 (€'=3,(= 1),

without the cumbersome use of formulas [13d]. All the other of our wide-
ranging overlaps give 14 or 15 decimal digits, except the last case with the
highest quantum numbers (10, 0, 0110, 9, 0) [13e]: that gives 11 decimal
digits. Since table I did not include all of the Jmax and imax values needed,
some were calculated individually. Eventually, all physically acceptable

orbitals will have jmax and imax values as data.




V. CONCLUSION

Our new procedure for overlap integrals is so straight forward and
stable that we can expect to approach machine accuracytr on all but unusual
cases. Even here, limited use of double precision can provide 16 decimal
digits for all physical orbitals.

" The. implications for all multicenter molecular integrals are clear:
Gauss-Legendre quadrature for interior regions should be used after the -
functions are expanded and evaluated on a fixed grid. The exterior regions
that will only have negative exponentials may safely be handled analytically.

An ab initio calculation on a molecule would require the reading in of
E- and F-matrices for each orbital of a basis set (together with their jmax
and imax values). Then, Y,(j) and Z,(j) would be calculated over a
standard grid. Now, we would be ready to calculate all multicenter

molecular integrals needed. This comprehensive approach should advance

the use of STOs in molecular problems.
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Orbital La ! Jmax imax
NLM 1 2 22 22
54 2 6 30 25
12 36 30
4 2 36 32
6 40 35
12 46 40
16 2 70 60
6 70 63
+12 72 64
543 1 3 25 21
6 28 24
12 36 30
4 3 35 31
6 40 34
12 44 38
16 3 67 59
6 70 61
12 72 64
54 4 1 4 24 22
6 28 24
12 34 30
4 4 34 32
6 36 34
12 44 40
16 4 68 60
6 68 60
12 70 66

Table I. The values of jmax and imax needed for 16 decimal digit accuracy of
orbital NLM corresponding to {a (screening constant times displacement

distance) and harmonic /.
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(* July 6,1995 ENERGY OF REGION 1,2,3,4,5 ; SUM 112345 *)
(* three center exchange *)
(* see H.W.Jones, J.Comp.Chem.12,1217(1991) *)

nn=1;hh=0;mm=0;z=1.2;a=2;jmax=36;w=2*z; zeta=2%*z;
gl[n_,a_]:=Which[n>=0,a*(n+1)/(n+l),n<-1,a*(n+l)/(n+l),True,Loglall;
filn ,a_,b ]:=Which[n>=0, (-Exp[-b*a]/b*(n+l)*Sum[n!/(n-t)1*(a*b)+
(n-t),{t,0,n}l+n!/b*(n+l)),
n<-1,
((-b)*(-n-1)*Sum[ (-Exp[-b*al *(-n-t-1)!/(-n-1)!
/{-b*a)*(-n-t) + (-n-t-1)!/(-n-1)!/(-n-t)!),
{t,1,-n-1}1)+(-b)*(~n-1)/(~n~1) | * (ExpIntegralEi[-b*a]
-Log([Abs[b]]-EulexrGamma),
T True,ExpIntegralEi[-b*a]-Log[Abs([bl]-EulerGammal;
f2[n ,a_,b_l:=Which[n>=0,Exp[-a*b]/b*(n+l)*Sunin!/(n-t)!*(b*a)*(n-t),
{t,0,n}], '
n<-1,
-(-b)*(-n-1)*Sum[-Exp[-b*a] *(-n-t-1)!/(-n-1) !/
(-b*a)4(-n-t),{t,1,-n-1}]
-(-b)*(-n-1)/(-n-1) ! *ExpIntegralEi[-b*a],
True, ~-ExpIntegralEi[-b*all;
flgam[n ,r ,z l:= 1l/z*(n+l)*Gammaln+1,0,z*r]//N;
flgaml[n_,w_l:=flgam[n,1,w]l;
(* activate points and weights *)
b=Sqrt[2.]; d=2.;
npoint=8;
blim=d; alim=.001;
bma= (blim-alim)/2;

. apb=(alim+blim)/2;

hmax=12;
mstop=nn+30+hmax+l;
rm=Table[-bma*zz[[i]]+apb, {i,1,npoint}];
rp=Table[bma*zz[[i]]+apb, {i,1,npoint}];
vnmflgaml=Table[0, {m,1,mstop}, {i,1,npoint}];
vpflgaml=Table[0, {m, 1,matop}, {i,1l,npoint}];
Do[ vmflgaml[[m,i]]l=flgaml[m,z*rm[[i]]];
vpflgaml[[m,i]l=£flgaml[m, z*rp[[i]1]],
{m,1,mstop}, {i,1,npoint}];

alfalr ]:=Sum[y[[qg+1l]]*r*qg,{q,h,30,2}]
ullr l:=xr*(nn+l)*Sum[y[{j+1]l]l1*r*j*flgaml[nn+j+h+1,z*r], {3,h,30,2}1;

bias=2*hmax-nn+1+1;

stop=bias+4nn-1;

vf2b=Table[0, {i,1,stop}];
Do[vE2b[[i]]l1=£2[i-bias,a,w+zetal, {i,1,stop}];
abias=-nn+2*hmax+1+1;

astop=abias+2nn-1;

vEf2a=Table[0, {t,1,astop}];

Dol vf2al[[t]]l=f2[t-abias,a,zetal,{t,1l,astop}];
vi2a=vf2a//N;

vE2b=vEf2b//N;

aa=Sqgrt[(2*z)4(2nn+l1l)/(2nn) !]




Y

threeC

Timing[exchange=0.0;
Do{
yb=Table[z*j*Exp[-z*b] *Sum[ematrix[[h+1,i+1,3j+1]1]1*(z*b)*(i-hh-h-1),
{i, 0, nn+hh+h-mm}], {j,0,3max}]//N;
yd=Table[z*j*Exp[-z*d] *Sum[ematrix[[h+1, 1+1,3+1]]*(z*d)*(1 ~hh-h-1),
{i,0,nn+hh+h-mm}], {j,0,imax}1//N;
zb=Table[z* (j-h~1)*Sum[ematrix[[h+1,j+1, 1+1]]*(z*b)‘1,
{i,h,jmax}], {(j,0,nn+h}]1//N;
zd=Table[z* (j-h-1)*Sum[ematrix[[h+1,j+1,i+1]]1*(z*d)*4i,
{i,h,jmax}]1, {3, 0,nn+h}1//N;
q2=Sum[yb[[j+1]]*£flgam[nn+1+j+h,b,z], {j,h, jmax,2}]1//N;
C3R=Table[0, {m,0,2nn+h}];
Do [C3R[[nn+j-k+1]1]1=C3R[[nn+j-k+1]]1+zb[[J+1]]1* (nn+3j) !/ (nn+j-k) ! /w* (k+1),
{j,0,nn+h}, {k,0,nn+j}1;
q3A~Exp[—w*b]*Sum[C3R[[m+1]]*b*m,{m,o 2nn+h}]//N ;
il=0.0;
Dol =rm[[i]];
If[r <= b,volt= r“(nn+1)*Sum[yb[[3+1]]*rA *flgaml[nn+l+j+h,z*r], {j,h, jmax,2}],
volt=q2/r* (h+l)+g3A/r* (h+l) -Exp[-w*r] /x4 (h+1) *Sum[C3R[ [m+1]] *x*m, {m, 0, 2nn+h}]1];
If[r <= d,aval=Sum[yd[[q+1l]]*r*q, {g, h,jmax}],
aval=Exp[-z*r]*Sum[zd[[q+1]] *r*(gq-h-1),{q,0,nn+h}]];
il=il+bma*ww[[i]]*r* (nn+l) *Exp[-z*r] *aval*volt;
r=xpl[il];
If[r <= b,volt=r+*(nn+l)*Sum{yb[[j+1]]*rAj*flgaml[nn+l+j+h,z*rl, {j,h,jmax,2}1,
volt=g2/r4 (h+1)+q3A/r4 (h+l)-Exp[-w*r] /r* (h+1)*Sum[C3R[[m+1]]*r*m, {m,0,2nn+h}11;
If[r <= d,aval=Sum[yd[[qg+1l]]*r*q, {q, h,jmax}],
aval=Exp[-z*r]*Sum[zd[[g+1]1]*r*(g~h-1),{q,0,nn+h}]];
il=il+bma*wwl[i]]*xA (nn+l)*Exp[-z*r]*aval*volt;
« {i,1,npoint}];

(* analytic outside *)
w=2.%z;
i2=q2*Sum[zd[[j+1]]*£f2[nn-1-2h+j,d,w], {j,0,nn+h}1//N;

ZC3R=Table[0, {t,0,3nn+2h}];
Do[ t=m+3;

ZC3R[[t+1]11=Z2C3R[[t+1]1+zd[[j+1]]1*C3R[[m+1]],

{j,0,nn+h}, {m, 0,2nn+h}];
i3R=-Sum[ZC3R[[t+1]]}*f2[nn-1-2h+t,d,4.*z],{t,0,3nn+2h}1//N;
i3A=qgq3A*sum[zd[[j+1]]1*£f2[nn-2h-1+j,d,2.*z1,(j,0,nn+h}]1//N;
i3=i3R+134;
il23=aa*4/(2h+1)42*(il1+i2+i3)*LegendreP[h,1l./Sqgqrt[2.11];
Print[h," moi1,m w,i2, " ",i3, " v,i1123];
exchange=exchange+il23
,{h,0,12}]; Print[exchange] ]

N[exchange, 16]
0.1099365385879246




